(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
ackin(s(X), s(Y)) → u21(ackin(s(X), Y), X)
u21(ackout(X), Y) → u22(ackin(Y, X))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
ackin(s(X), s(Y)) →+ u21(ackin(s(X), Y), X)
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [Y / s(Y)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
ackin(s(X), s(Y)) → u21(ackin(s(X), Y), X)
u21(ackout(X), Y) → u22(ackin(Y, X))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
ackin(s(X), s(Y)) → u21(ackin(s(X), Y), X)
u21(ackout(X), Y) → u22(ackin(Y, X))
Types:
ackin :: s → s → ackout:u22
s :: s → s
u21 :: ackout:u22 → s → ackout:u22
ackout :: s → ackout:u22
u22 :: ackout:u22 → ackout:u22
hole_ackout:u221_0 :: ackout:u22
hole_s2_0 :: s
gen_ackout:u223_0 :: Nat → ackout:u22
gen_s4_0 :: Nat → s
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
ackin,
u21They will be analysed ascendingly in the following order:
ackin = u21
(8) Obligation:
TRS:
Rules:
ackin(
s(
X),
s(
Y)) →
u21(
ackin(
s(
X),
Y),
X)
u21(
ackout(
X),
Y) →
u22(
ackin(
Y,
X))
Types:
ackin :: s → s → ackout:u22
s :: s → s
u21 :: ackout:u22 → s → ackout:u22
ackout :: s → ackout:u22
u22 :: ackout:u22 → ackout:u22
hole_ackout:u221_0 :: ackout:u22
hole_s2_0 :: s
gen_ackout:u223_0 :: Nat → ackout:u22
gen_s4_0 :: Nat → s
Generator Equations:
gen_ackout:u223_0(0) ⇔ ackout(hole_s2_0)
gen_ackout:u223_0(+(x, 1)) ⇔ u22(gen_ackout:u223_0(x))
gen_s4_0(0) ⇔ hole_s2_0
gen_s4_0(+(x, 1)) ⇔ s(gen_s4_0(x))
The following defined symbols remain to be analysed:
u21, ackin
They will be analysed ascendingly in the following order:
ackin = u21
(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol u21.
(10) Obligation:
TRS:
Rules:
ackin(
s(
X),
s(
Y)) →
u21(
ackin(
s(
X),
Y),
X)
u21(
ackout(
X),
Y) →
u22(
ackin(
Y,
X))
Types:
ackin :: s → s → ackout:u22
s :: s → s
u21 :: ackout:u22 → s → ackout:u22
ackout :: s → ackout:u22
u22 :: ackout:u22 → ackout:u22
hole_ackout:u221_0 :: ackout:u22
hole_s2_0 :: s
gen_ackout:u223_0 :: Nat → ackout:u22
gen_s4_0 :: Nat → s
Generator Equations:
gen_ackout:u223_0(0) ⇔ ackout(hole_s2_0)
gen_ackout:u223_0(+(x, 1)) ⇔ u22(gen_ackout:u223_0(x))
gen_s4_0(0) ⇔ hole_s2_0
gen_s4_0(+(x, 1)) ⇔ s(gen_s4_0(x))
The following defined symbols remain to be analysed:
ackin
They will be analysed ascendingly in the following order:
ackin = u21
(11) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol ackin.
(12) Obligation:
TRS:
Rules:
ackin(
s(
X),
s(
Y)) →
u21(
ackin(
s(
X),
Y),
X)
u21(
ackout(
X),
Y) →
u22(
ackin(
Y,
X))
Types:
ackin :: s → s → ackout:u22
s :: s → s
u21 :: ackout:u22 → s → ackout:u22
ackout :: s → ackout:u22
u22 :: ackout:u22 → ackout:u22
hole_ackout:u221_0 :: ackout:u22
hole_s2_0 :: s
gen_ackout:u223_0 :: Nat → ackout:u22
gen_s4_0 :: Nat → s
Generator Equations:
gen_ackout:u223_0(0) ⇔ ackout(hole_s2_0)
gen_ackout:u223_0(+(x, 1)) ⇔ u22(gen_ackout:u223_0(x))
gen_s4_0(0) ⇔ hole_s2_0
gen_s4_0(+(x, 1)) ⇔ s(gen_s4_0(x))
No more defined symbols left to analyse.